Convergence of a Jacobi-type method

for the approximate orthogonal tensor diagonalization

Erna Begović Kovač

For Short Communications Satellite 2022 (SCS 2022)
July 2022

OUTLINE

- Introduction
- Jacobi-type algorithm
- Convergence
- Numerical examples
- Modifications

Details can be found in

- E. Begović Kovač: Convergence of a Jacobi-type method for the approximate orthogonal tensor diagonalization. arXiv:2109.03722 [math.NA]

SVD-LIKE TENSOR DECOMPOSITION

- For the sake of simplicity, we work with real $n \times n \times n$ tensors. All results can be generalized to $n_{1} \times n_{2} \times \cdots \times n_{d}$ tensors.
- Two related problems:
\& SVD-like tensor decomposition

$$
\mathcal{A}=\mathcal{S} \times_{1} U \times_{2} V \times_{3} W
$$

where \mathcal{S} is a core tensor that mimics the diagonal matrix of singular values from the matrix SVD decomposition, and U, V, W are orthogonal matrices;
\& Tensor diagonalization problem - find orthogonal transformations U, V, W that "diagonalize" \mathcal{A}.

INTRODUCTION

- A general $n \times n \times n$ tensor can not be diagonalized using orthogonal transformations.
\rightarrow We need \mathcal{S} "as diagonal as possible".
- Off-diagonal norm of \mathcal{S} is minimized,

$$
\operatorname{off}(\mathcal{S}) \rightarrow \min
$$

or dually, the Frobenius norm of the diagonal is maximized,

$$
\|\operatorname{diag}(\mathcal{S})\|^{2}=\sum_{i=1}^{n} \mathcal{S}_{i i i}^{2} \rightarrow \max
$$

PRELIMINARIES

- Tensor analogues of columns and rows are called fibers.

- mode- m unfolding \leftrightarrow arranging mode- m fibers of \mathcal{X} into columns of $X_{(m)}$.

PRELIMINARIES

- The mode- m product of \mathcal{X} and $A \in \mathbb{R}^{c \times n}$ is a tensor

$$
\mathcal{Y}=\mathcal{X} \times_{m} A \quad \text { such that } \quad Y_{(m)}=A X_{(m)}
$$

- Properties:

$$
\begin{gathered}
\mathcal{X} \times_{p} A \times_{q} B=\mathcal{X} \times_{q} B \times_{p} A, \quad p \neq q, \\
\mathcal{X} \times_{m} A \times_{m} B=\mathcal{X} \times_{m}(B A) .
\end{gathered}
$$

- Tucker decomposition of \mathcal{X}

$$
\mathcal{X}=\mathcal{S} \times_{1} A_{1} \times_{2} A_{2} \times_{3} \cdots \times_{d} A_{d}
$$

- The norm of \mathcal{X}

$$
\|\mathcal{X}\|=\sqrt{\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{d}=1}^{n_{d}} x_{i_{1} i_{2} \ldots i_{d}}^{2}}
$$

INTRODUCTION

$$
\mathcal{A}=\mathcal{S} \times_{1} U \times_{2} V \times_{3} W
$$

- Core tensor \mathcal{S} can be expressed as

$$
\mathcal{S}=\mathcal{A} \times_{1} U^{T} \times_{2} V^{T} \times_{3} W^{T}
$$

- For a given $n \times n \times n$ tensor \mathcal{A} we need to find orthogonal matrices U, V, W that maximize the function

$$
f(U, V, W)=\left\|\operatorname{diag}\left(\mathcal{A} \times_{1} U^{T} \times_{2} V^{T} \times_{3} W^{T}\right)\right\|^{2}
$$

- J. Li, K. Usevich, P. Comon (SIMAX 2018, LAA 2019)
- C. D. Moravitz Martin, C. F. Van Loan (SIMAX 2008)

JACOBI-TYPE ALGORITHM

- The k th iteration:

$$
\mathcal{A}^{(k+1)}=\mathcal{A}^{(k)} \times_{1} R_{U, k}^{T} \times{ }_{2} R_{V, k}^{T} \times{ }_{3} R_{W, k}^{T}, \quad k \geq 0, \quad \mathcal{A}^{(0)}=\mathcal{A}
$$

where $R_{U, k}, R_{V, k}, R_{W, k}$ are plane rotations of the form

JACOBI-TYPE ALGORITHM

- Index pair (i, j) is called pivot position.
- Pivot positions are taken in any cyclic ordering.
- Matrices $R_{U, k}, R_{V, k}, R_{W, k}$ have the same pivot position $\left(i_{k}, j_{k}\right)$, while the rotation angle ϕ_{k} is, in general, different for each rotation.
- Identity initialization: set $U_{0}=V_{0}=W_{0}=I$. Then

$$
\begin{aligned}
U_{k+1} & =U_{k} R_{U, k} \\
V_{k+1} & =V_{k} R_{V, k} \\
W_{k+1} & =W_{k} R_{W, k}
\end{aligned}
$$

MICROITERATIONS

- Each iteration consists of three microiterations where we hold two variables constant and vary the third one. We have

$$
\begin{aligned}
\mathcal{B}^{(k)} & =\mathcal{A}^{(k)} \times_{1} R_{U, k}^{T}, \\
\mathcal{C}^{(k)} & =\mathcal{B}^{(k)} \times_{2} R_{V, k}^{T}, \\
\mathcal{A}^{(k+1)} & =\mathcal{C}^{(k)} \times_{3} R_{W, k}^{T},
\end{aligned}
$$

where by $\mathcal{B}^{(k)}$ and $\mathcal{C}^{(k)}$ we denote intermediate steps.

ROTATION ANGLES

- To get the rotation angles for the pivot position (i, j) we observe a $2 \times 2 \times 2$ subproblem

$$
\|\operatorname{diag}(\hat{S})\|^{2}=\sigma_{i i j}^{2}+\sigma_{j j j}^{2} \rightarrow \max
$$

where

$$
\begin{gathered}
\hat{\mathcal{S}}=\hat{\mathcal{A}} \times_{1} \hat{U}^{T} \times{ }_{2} \hat{V}^{T} \times_{3} \hat{W}^{T}, \\
\hat{\mathcal{S}}(:,:, 1)=\left[\begin{array}{cc}
\sigma_{i i i} & \sigma_{i j i} \\
\sigma_{j i i} & \sigma_{j j i}
\end{array}\right], \quad \hat{\mathcal{S}}(:,:, 2)=\left[\begin{array}{cc}
\sigma_{i i j} & \sigma_{i j j} \\
\sigma_{j i j} & \sigma_{j j i}
\end{array}\right],
\end{gathered}
$$

and $\hat{U}, \hat{V}, \hat{W}$ are 2×2 rotations.

PIVOT CONDITION

- To ensure the convergence of the algorithm, we only take pivot pair (i, j) such that (at least) one of the following inequalities is true:

$$
\begin{aligned}
\left|\left\langle\nabla_{u} f, U \dot{R}(i, j, 0)\right\rangle\right| & \geq \eta\left\|\nabla_{u} f\right\|_{2} \\
\left|\left\langle\nabla_{v} f, V \dot{R}(i, j, 0)\right\rangle\right| & \geq \eta\left\|\nabla_{v} f\right\|_{2} \\
\left|\left\langle\nabla_{w} f, W \dot{R}(i, j, 0)\right\rangle\right| & \geq \eta\left\|\nabla_{w} f\right\|_{2}
\end{aligned}
$$

where $0<\eta \leq \frac{2}{n}$ and $\dot{R}(i, j, 0)$ denotes $\left.\frac{\partial}{\partial \phi} R(i, j, \phi)\right|_{\phi=0}$.

- If (i, j) does not satisfy any of these conditions, then it will be skipped and we move to the next pair in the cycle.
- It is always possible to find an appropriate pivot pair.

ALGORITHM

Jacobi-type algorithm

Input: $\mathcal{A} \in \mathbb{R}^{n \times n \times n}$
Output: orthogonal matrices U, V, W
$\mathcal{A}^{(0)}=\mathcal{A} ; U_{0}=I ; \quad V_{0}=I ; W_{0}=I ;$
Repeat
Select (i_{k}, j_{k}).
Find ϕ_{k} for $R_{U, k}$.
$\mathcal{B}^{(k)}=\mathcal{A}^{(k)} \times_{1} R_{U, k}$
$U_{k+1}=U_{k} R_{U, k}$
Find ϕ_{k} for $R_{V, k}$.
$\mathcal{C}^{(k)}=\mathcal{B}^{(k)} \times_{2} R_{V, k}$
$V_{k+1}=V_{k} R_{V, k}$
Find ϕ_{k} for $R_{W, k}$.
$\mathcal{A}^{(k+1)}=\mathcal{C}^{(k)} \times{ }_{3} R_{W, k}$
$W_{k+1}=W_{k} R_{W, k}$
UnTIL convergence

CONVERGENCE

Lemma

For any differentiable function f : $O_{n} \times O_{n} \times O_{n} \rightarrow \mathbb{R}, U, V, W \in O_{n}$, and $0<\eta \leq \frac{2}{n}$ it is always possible to find index pairs (iu,ju), (iv,jv), (iw,jw) such that
(i) $|\langle\nabla u f(U, V, W), U \dot{R}(i u, j u, 0)\rangle| \geq \eta\|\nabla \cup f(U, V, W)\|_{2}$,
(ii) $|\langle\nabla \vee f(U, V, W), V \dot{R}(i v, j v, 0)\rangle| \geq \eta\|\nabla \vee f(U, V, W)\|_{2}$,
(iii) $\left|\left\langle\nabla_{w} f(U, V, W), W \dot{R}(i w, j w, 0)\right\rangle\right| \geq \eta\left\|\nabla{ }_{w} f(U, V, W)\right\|_{2}$, where $\dot{R}(i, j, 0)=\left.\frac{\partial}{\partial \phi} R(i, j, \phi)\right|_{\phi=0}$.

Lemma

Let $U_{k}, V_{k}, W_{k}, k \geq 0$ be the sequences generated by the algorithm. Let $\bar{U}, \bar{V}, \bar{W}$ be a triplet of orthogonal matrices satisfying $\nabla f(\bar{U}, \bar{V}, \bar{W}) \neq 0$. Then there exist $\epsilon>0$ and $\delta>0$ such that

$$
\left\|U_{k}-\bar{U}\right\|_{2}<\epsilon, \quad\left\|V_{k}-\bar{V}\right\|_{2}<\epsilon, \quad\left\|W_{k}-\bar{W}\right\|_{2}<\epsilon
$$

imply

$$
f\left(U_{k+1}, V_{k+1}, W_{k+1}\right)-f\left(U_{k}, V_{k}, W_{k}\right) \geq \delta .
$$

CONVERGENCE

Theorem

Every accumulation point (U, V, W) obtained by the Jacobi-type algorithm is a stationary point of the function

$$
f(U, V, W)=\left\|\operatorname{diag}\left(\mathcal{A} \times_{1} U^{T} \times_{2} V^{T} \times_{3} W^{T}\right)\right\|^{2}
$$

NUMERICAL EXAMPLES 1

We observe the relative off-norm of a tensor which is given as

$$
\frac{\operatorname{off}(\mathcal{A})}{\|\mathcal{A}\|}
$$

Change in the relative off-norm for two $30 \times 30 \times 30$ tensors with different values of η.

Diagonalizable tensor

Non-diagonalizable tensor

NUMERICAL EXAMPLES 2

Different cyclic pivot strategies on four $10 \times 10 \times 10$ tensors.

Tensor 1

Tensor 3

Tensor 2

HOSVD INITIALIZATION

- Take

$$
\widetilde{\mathcal{S}}=\mathcal{A} \times_{1} \widetilde{U}^{T} \times_{2} \widetilde{V}^{T} \times_{3} \widetilde{W}^{T}
$$

where $\widetilde{U}, \widetilde{V}$, and \widetilde{W} are matrices of left singular vectors of $A_{(1)}, A_{(2)}$, and $A_{(3)}$, respectively. We set

$$
\mathcal{A}^{(0)}=\widetilde{\mathcal{S}}, \quad U_{0}=\widetilde{U}, \quad V_{0}=\widetilde{V}, \quad W_{0}=\widetilde{W}
$$

Random $20 \times 20 \times 20$ tensor

TRACE MAXIMIZATION

- Instead of maximizing

$$
\|\operatorname{diag}(\mathcal{S})\|^{2}=\sum_{i=1}^{n} \mathcal{S}_{i i i}^{2}
$$

we can opt for

$$
\operatorname{tr}(\mathcal{S})=\sum_{i=1}^{n} \mathcal{S}_{i i i} \rightarrow \max
$$

More can be found in

- E. Begović Kovač, A. Bokšić: Trace maximization algorithm for the approximate tensor diagonalization.
arXiv:2111.01466 [math.NA]

THANK YOU!

Erna Begović Kovač
 University of Zagreb ebegovic@fkit.hr

 FoundationThis work has been supported in part by Croatian Science Foundation under the project UIP-2019-04-5200.

